Stress-controlled hysteresis and long-time dynamics of implicit differential equations arising in hypoplasticity
نویسندگان
چکیده
A long-time dynamic for granular materials arising in the hypoplastic theory of Kolymbas type is investigated. It assumed that hardness allows exponential degradation, which leads to densification material states. The governing system a rate-independent strain under stress control described by implicit differential equations. Its analytical solution arbitrary inhomogeneous coefficients constructed closed form. Under cyclic loading periodic pressure, finite ratcheting void ratio derived explicit form, converges limiting process (attractor) when number cycles tends infinity.
منابع مشابه
APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS IN STABILITY INDEX AND CRITICAL LENGTH IN AVALANCHE DYNAMICS
In this study, Stability analysis of snow slab which is under detonation has developed in the present model. The model has been studied by using the basic concepts of non-detonation model and concepts of underwater explosions with appropriate modifications to the present studies. The studies have also been extended to account the effect of critical length variations at the time of detonation an...
متن کاملDifferential transform method for a a nonlinear system of differential equations arising in HIV infection of CD4+T cell
In this paper, differential transform method (DTM) is described and is applied to solve systems of nonlinear ordinary differential equations which is arising in HIV infections of cell. Intervals of validity of the solution will be extended by using Pade approximation. The results also will be compared with those results obtained by Runge-Kutta method. The technique is described and is illustrat...
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
Averaging Principle for Differential Equations with Hysteresis
The goal of this paper is to extend the averaging technique to new classes of hysteresis operators and oscillating functions as well as to bring more consistency into the exposition. In the first part of the paper, making accent on polyhedral vector sweeping processes, we keep in mind possible applications to the queueing theory where these processes arise naturally. In the second part we conce...
متن کاملHAAR WAVELET AND ADOMAIN DECOMPOSITION METHOD FOR THIRD ORDER PARTIAL DIFFERENTIAL EQUATIONS ARISING IN IMPULSIVE MOTION OF A AT PLATE
We present here, a Haar wavelet method for a class of third order partial dierentialequations (PDEs) arising in impulsive motion of a flat plate. We also, present Adomaindecomposition method to find the analytic solution of such equations. Efficiency andaccuracy have been illustrated by solving numerical examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archivum mathematicum
سال: 2023
ISSN: ['0044-8753', '1212-5059']
DOI: https://doi.org/10.5817/am2023-3-275